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ABSTRACT 

This thesis evaluates the effectiveness of high-visibility crosswalks (HVC) to 

improve pedestrian safety at uncontrolled locations using the SHRP2 naturalistic driving 

study (NDS) data.  This is accomplished by analyzing the driving behavior of SHRP2 

participants at three uncontrolled locations in the Erie County, New York test site.  At two 

intersections, traversal data were available both before and after HVC installation allowing 

for a before/after analysis.  At the third location, only post HVC installation data were 

available.  Because no pedestrian – motor vehicle crashes were observed, crash surrogates 

(i.e., speed, acceleration, and gas pedal position) were used to evaluate driving behavior.  

Random effects linear regression models with fixed and random parameters were estimated 

for the change in the surrogate measures between predetermined benchmark points and the 

crosswalks, while controlling for a variety of other factors.  The results show that presence 

of both the HVC and pedestrian crossing sign decreased the change in speed and 

acceleration between the benchmark and crosswalk points.  In addition, there was a greater 

deceleration between the benchmark and crosswalk points after HVC installation.  This 

exploratory work shows that HVCs have the potential to improve pedestrian safety and 

modify driving behavior, and that NDS data are useful for analyzing their effectiveness.   
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INTRODUCTION 

 Background and Motivation 

 

In the United States, traffic crashes injured an estimated 66,000 pedestrians and 

killed 4,735 in the year 2013.  These pedestrian deaths accounted for 14 percent of all 

fatalities in traffic crashes.  In New York State alone, pedestrian fatalities accounted for 28 

percent of the total fatalities on the state’s roadways (NHTSA, 2013; NYS, 2014).  Making 

roadways safer for  pedestrians is an important national and statewide goal.  Many 

strategies to accomplish this goal have been studied, such as: passive markings and signage 

(e.g. high-visibility crosswalk markings), traffic calming measures (e.g., roadway 

narrowing, horizontal shifts, and vertical deflections), and active control devices (e.g., 

automated pedestrian detection, smart lighting, and high intensity activated crosswalks).  It 

is important to carefully consider which countermeasure will be the most effective at a 

given location, including whether marked crosswalks should be provided at all.   

 

Safety analysis of a location is often retroactive, that is, after accidents have 

occurred and pedestrians have been injured or killed.  Safety countermeasures are either 

implemented as a reaction to accidents, or proactively without adequate studies specific to 

the location or countermeasure type.  It is diffult to accurately analyze driver behavior and 
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reactions to various countermeasures.  Past research has used various methods from driving 

simulators to field observations of speed.  While driving simulators offer resarchers an 

opportunity to observe drivers under controlled conditions, it does not fully represent how 

drivers would behave in their own vehicle on the roadway.  In-vehicle field observations 

can address some of these limitations, but drivers may behave differently with an observer 

in the car.  Speed and yielding field observations are useful to measure overall effect of 

safety countermeasures, as researchers can study how many drivers are reacting to certain 

conditions.  However, specific behavior characteristics can not be observed and anlyzed.  

Naturalistic driving study (NDS) data provide a unique opportunity to analyze driver 

behavior, as details about every day trips are recorded for an extended period of time 

without experimental control.  Drivers’ reactions to crosswalk striping and other safety 

countermeasures can be accurately measured and anlyzed.  

 

 Objectives 

 

The present study focuses on the relatively low cost, widely used pedestrian safety 

strategy of high-visibility crosswalk (HVC) markings.  The overall goal is to evaluate the 

effectiveness of HVCs to improve pedestrian safety at uncontrolled locations.  This is 

accomplished using the 2nd Strategic Highway Research Program (SHRP2) naturalistic 

driving study (NDS) data collected at the Erie County, New York test site.  Driving 

behavior of SHRP2 participants is analyzed at three uncontrolled locations with HVC 

markings.  For two of the locations, traversal data was acquired both before and after HVC 
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installation, which allowed for before-after analysis.  At the third location only post-HVC 

installation data was available.  Statistical models are developed to evaluate driver 

reactions prior to crossing the HVC while controlling for a variety of factors, including 

intersection and roadway geometric characteristics; traffic characteristics; time and date of 

trips; lighting, pavement, and weather conditions; driver characteristics; and vehicle 

characteristics. 

 

No pedestrian – motor vehicle crashes were observed in the Erie County SHRP2 

test site; therefore, pedestrian safety surrogates are analyzed in the before-after analysis 

and statistical modelling.  The surrogate measures (i.e., speed, acceleration, and gas pedal 

position) represent driver behavior and have an impact on pedestrian safety at crosswalks.  

The parameters used are the values of the three measures at a benchmark point prior to the 

crosswalk, at the HVC location, and the difference between the two points.  The desirable 

effects to improve pedestrian safety are shown in Table 1.1.  In general, slower speeds, less 

acceleration (or more deceleration), and lower gas pedal position (less pressure) can 

increase pedestrian safety.  
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Table 1.1. Desirable effects of HVCs on surrogate measures to improve pedestrian safety. 

Parameter Desirable Effect for Pedestrian Safety 

Speed at Benchmark (km/h) Slower speed 

Speed at HVC (km/h) Slower speed 

Speed Difference Between Benchmark 
and HVC (km/h) 

Decrease (more slowing between 
benchmark and HVC) 

Acceleration at Benchmark (g) Decrease (less acceleration or more 
deceleration) 

Acceleration at HVC  (g) Lower (less acceleration or more 
deceleration) 

Acceleration Difference Between 
Benchmark and HVC  (g) 

Decrease (greater deceleration between 
benchmark and HVC) 

Gas Pedal Position at Benchmark Lower (less pressure on gas pedal) 

Gas Pedal Position at HVC Lower (less pressure on gas pedal) 

Gas Pedal Position Difference Between 
Benchmark and HVC 

Decrease (let up on gas pedal between 
benchmark and HVC) 
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LITERATURE REVIEW 

 Introduction 

 

Determining the best methods to increase pedestrian safety has been the topic of 

many engineering evaluations and research projects.  Building infrastructure for pedestrian 

facilities is necessary to provide mobility and allow people to cross the road safely, 

especially in urban and built-up areas where pedestrian volumes are high.  Pedestrian 

crossings at unsignalized intersections and mid-block locations are a top safety concern.  

There are various factors that affect how effective a countermeasure will be at a given 

location.  The effectiveness of high-visibility crosswalk (HVC) markings, particularly at 

uncontrolled locations, has been a topic of debate in the traffic safety community.  Past 

research evaluating crosswalks has produced varying results.  There are many approaches 

to evaluating safety, from analyzing accident rates to statistical analysis of crash or speed 

data. 

 

 Pedestrian Crash Analysis 

 

In the late 1960s, Herms analyzed crashes at marked and unmarked crosswalks at 

unsignalized intersections in San Diego, California.  He found that there were significantly 
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more pedestrian crashes in marked crosswalks as in their unmarked counterparts (Herms, 

1972).  The study compared accident counts and did not take into account the effects of 

other factors that could have led to increased pedestrian crashes.  The results of the study 

lead to the removal of many unsignalized pedestrian crossings in urban areas, which has 

been criticized for limiting pedestrian mobility.   

 

Another study by Jones and Tomcheck (2000) analyzed vehicle-pedestrian 

collisions at uncontrolled intersections in Los Angeles, California where marked 

crosswalks were not reinstalled after roadway resurfacing.  The before-and-after study of 

crash history showed that the number of pedestrian-vehicle collisions decreased where 

markings were removed, and crashes at adjacent intersections where markings were 

reinstalled only increased slightly showing that the crashes at removed crosswalks were 

not being transferred to adjacent marked crosswalks.   

 

Zegeer et al. (2005) performed a more comprehensive analysis of pedestrian 

accidents at uncontrolled crosswalks by accounting for other factors such as speed, traffic 

volume, and street width.  The study analyzed pedestrian crashes at a set of uncontrolled 

marked crosswalks and unmarked comparison sites.  The findings show that as number of 

lanes, traffic volume, and speed limit increase, crosswalk markings alone are related to 

higher crash frequency compared to locations with no markings.  However, raised medians 

on multilane roads resulted in a lower crash rate.  One explanation given for increased 

crashes at crosswalks is that installing marked crosswalks leads pedestrians to choose to 

cross at the uncontrolled location rather than using the closed signalized crosswalk.  
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Therefore, marked crosswalks increased the number of at-risk pedestrians.  The study 

recommended that other treatments should be installed in addition to crosswalk markings 

to provide a safer street crossing than a crosswalk alone.  The analysis by Zegeer et al. was 

based on a small amount of data with an average of one pedestrian crash per crosswalk site 

every 43.7 years (Zegeer et al., 2005, pg. 16).  Over the average of 5 years of data across 

the 2,000 sites, there were only 229 pedestrian crashes.  Problems of past studies were 

addressed by including other roadway and traffic factors, but the few observations of 

crashes indicates that the factors that affect crashes may not be accurately represented.  

 

Studies have been completed to determine the factors that affect pedestrian injury 

severity at unsignalized crosswalks.  Haleem, Alluri, and Gan (2015) reported that factors 

including darkness, increased speed limit, and pedestrians walking along the roadway 

resulted in higher pedestrian severity risk.  Similarly, Olszewski et al. (2015) found that 

divided roads, two-way roadways, mid-block locations, darkness, and higher speed limits 

increase pedestrian fatality risk.  These results suggest reducing crash severity by 

improving roadway lighting near crosswalks, avoiding installing crosswalks on high speed 

roads, and signalizing crosswalks on divided roads. 

 

 Driving Behavior 

 

In addition to analyzing accident history, research has been done evaluating drivers’ 

reactions and their speed at crosswalks.  It has been found that crosswalk markings 
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generally result in decreased vehicle speeds (Knoblauch & Raymond, 2000; Knoblauch, 

Nitzburg, & Seifert, 2001).  Nitzburg and Knoblauch (2001) evaluated the effectiveness of 

HVC markings combined with pedestrian crossing signs and reported an increase in driver 

yielding behavior.  However, these studies looked at average driver behavior before and 

after HVC installation, which cannot capture actual behavior of individual drivers.  They 

also reported an increase in crosswalk usage by pedestrians after the installation, which 

supports the observation that pedestrians prefer to use crossing locations that have marked 

crosswalks. 

 

To study individual drivers, driving simulator studies have also been used to 

evaluate driver behavior and pedestrian safety.  Gómez et al. (2013) analyzed advance yield 

markings for a marked midblock crosswalk.  The markings are a row of triangles painted 

on the raodway before the crosswalk, with signs telling drivers to yield there for 

pedestrians.  The study measured perfomance with crashes and glancing behavior.  With 

the advance yield markings, fewer crashes occurred and drivers looked more frequenty and 

sooner for pedestrians at the crosswalk.  The project was validated with a field evaluation 

of advance yield markings by Samuel et al. (2013).  The study involved staged pedestrians 

attempting to cross and an in-vehicle field study on an open road course.  In addition to 

validating the driving simulator results, it was determined that vacating parking spots 

adjacent to the crosswalk (at least between the yield markings and crosswalk) improved 

yielding behavior by clearing the sight line.  
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The previous research was used by Fitzpatrick et al. (2006) to develop guidelines 

for selecting the appropriate pedestrian crossing treatments at unsignalized intersections 

and midblock locations.  Motorist compliance (i.e., yielding or stopping) was considered 

the measure of effectiveness, as it has been shown to be related to pedestrian safety.  The 

guidelines include the roadway and traffic characteristics that should be considered in 

determining which specific treatment(s) will provide a safe crossing when crosswalks are 

being installed. 

 

High-visibility crosswalk (HVC) marking styles were reviewed by McGrane and 

Mitman (2013) to determine what types of crosswalk markings were the most effective.  

They concluded that high-visibility markings are more easily detected by motorists than 

other styles, so that drivers become aware of the potential for pedestrians to be present and 

can yield sooner.  Whenever it is determined that marked crosswalks should be provided 

at an uncontrolled location, HVC markings should be installed.  While they can improve 

overall visibility of a crosswalk, HVCs are the most effective when combined with other 

enhancements such as warning beacons, signage, or geometric improvements.   

 

 Methodological Approach 

 

Many different statistical modeling approaches have been used to analyze roadway 

and traffic safety data.  One common approach is to study accident counts, as discussed 

above.  Count data are more accurately analyzed if they are normalized into accident rates 
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to compare across locations and times.  Accident counts are commonly normalized by 

traffic volumes.  Accident rates are continuous data that can only take positive values, and 

are left-censored at zero because there are many roadway segments with no observed 

accidents over a given period of time.  For these reasons, Tobit regression analysis is an 

applicable model form to use to analyze accident rates.   

 

Tobit analysis has been applied in past research, such as by Anastasopoulos et al 

(2008).  The application of Tobit models was explored by applying it to accident rates on 

interstate segments in Indiana.  By using a modeling approach that could account for left-

censored data, the complete available data could be used by including segments with and 

without observed accidents.  The results showed that a variety of pavement, geometric, and 

traffic factors had a significant effect on vehicle accidents, and that the Tobit model fit the 

data well.  Another study by Anastasopoulos et al (2012e) incorporated random parameters 

to account for unobserved heterogeneity.  The same data from Indiana was used, and the 

results were compared.  It was shown that the random parameters Tobit model outperforms 

its fixed parameters counterpart. 

 

Tobit regression analysis was also applied to highways in Washington State by 

Anastasopoulos et al (2012f), and took a new approach by considering accident rates by 

injury-severity (i.e., no-injury, possible injury, and injury).  The multivariate Tobit model 

that was applied was found to outperform its univariate counterpart.  The effects of 

exploratory parameters were not the same across the injury-severities, which shows that a 
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multivariate approach has the potential to provide a fuller understanding of the factors of 

accident rates and injury-severities.   

 

The factors that affect accident rates have also been analyzed by taking different 

approaches.  Anwaar et al (2012) used aggregate data for 178 countries to study the 

relationship between traffic safety, health service levels, and motorization levels.  The data 

that were used were the first comprehensive set of data made available by the World Health 

Organization and the International Road Federation, and the factors were normalized by 

population to compare across countries of different sizes.  Two modeling specifications 

were tested to estimate the national roadway fatality rate: a set of regression models, and a 

system of seemingly unrelated regression equations (SURE) models.  It was determined 

that the SURE model was statistically superior to the separately-estimated regression 

models.  The results show that a higher vehicle fatality rate in a nation is associated with 

factors such as low-to-median income levels, low road network density, and low 

enforcement of seatbelt laws.  The data has limitations related to different measurement 

techniques between countries, especially developing countries; however, the results offer 

preliminary insights on identifying nationwide patterns to address in order to improve 

traffic safety. 

 

 Factors that affect accidents vary across locations, resulting in unobserved 

heterogeneity.  Instead of assuming that parameters are fixed across observations, random 

parameter statistical modeling allows some parameters to vary.  Anastasopoulos and 

Mannering (2009) applied random parameters to accident frequency count models and 
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demonstrated that random parameters regression has considerable potential for analyzing 

accident data.  Ignoring the possibility of unobserved heterogeneity can result in 

significantly different results.  Random parameters were also applied by Anastasopoulos 

and Mannering (2011) to crash-severity logit models to estimate the severity of a crash 

given that it has happened.  When the statistical fit of the models was compared to the 

traditional fixed parameter models, it was found that the random parameter models provide 

a statistically better fit.  

 

Random parameter modeling has been used to improve analysis accuracy with other 

modeling approaches and in areas other than traffic safety, such as pavement condition, 

travel times, and project contract types.  Anastasopoulos et al (2011b) explored state-level 

pavement performance using logit models.  Aggregate state-level data on pavement 

performance, money spent on preservation, surface geology, and climate were used to 

estimate logit models for pavement condition by roadway functional class.  Random 

parameters were incorporated to account for random variations across geographic 

locations.  The exploratory study demonstrated the potential for using random parameter 

models to analyze pavement performance.  The potential was again demonstrated with the 

seemingly unrelated regression equations (SURE) approach.  Anastasopoulos et al (2012d) 

used random parameters SURE models to determine the performance of rehabilitated 

pavements.  The SURE approach was used to account for the interrelation among the 

various pavement performance measures used. 
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Random parameters have also been used to account for unobserved heterogeneity 

in hazard-based duration models, such as by Anastasopoulos and Mannering (2015).  Using 

a forecast with SURE models and historical pavement condition thresholds, the service life 

of pavement overlays and replacement were determined.  Random parameter duration 

models were then estimated to identify the influential factors of overlay and replacement 

performance.  When compared to corresponding fixed parameters models, the random 

parameter models were found to have a statistically superior fit of the data at a 99.9% 

confidence level.  Random parameters duration models were also used to assess the 

likelihood and duration of highway project delays by Anastasopoulos et al (2012c).  A 

random parameters binary logit model was used to evaluate the likelihood of time delay 

based on project characteristics, then the duration models were used to study the factors 

that contribute to the duration of the project delay. 

 

Random parameters with a hazard-based approach has also been used to analyze 

urban travel times (Anastasopoulos et al, 2012a).  The traditional approach to travel time 

analysis uses a complex modeling system based on activity and trip generation methods.  

A more simplistic approach was used to focus on the travel time data alone, but simplifying 

such a complex decision-making process introduces unobserved heterogeneity with effects 

that vary across the population.  This was accounted for by using random parameters for 

many of the characteristics that were found to be significant, including socio-

demographics, trip characteristics, travel mode, and time of day of the trip.  Analysis of the 

results showed that the random parameters model had a better statistical fit than its fixed 

parameter counterpart.   
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Incorporating random parameters with various modeling methods was found to 

improve statistical fit in other studies analyzing the performance of highway project 

contract types including public-private partnerships and performance-based contracts 

(Anastasopoulos et al; 2009, 2010a, 2010b, 2011a, 2014).  Based on the results of these 

and the research that was discussed in more detail above, it can be determined that random 

parameters offer a good opportunity to account for possible estimation issues.  Rather than 

the traditional approach of assuming that parameters have the same effects across the 

population, random parameters can account for the unobserved factors that can cause the 

effects to vary.  

 

 Summary 

 

Previous research has shown that marked crosswalks at uncontrolled locations can 

potentially increase pedestrian accidents in some locations, but improve safety in other 

locations.  The effectiveness of crosswalk markings implemented alone depends on the 

specific roadway and traffic characteristics of the location.  Some studies did not fully and 

accurately incorporate these other factors, and the results led to the removal of crosswalks.  

However, this means decreasing pedestrian mobility and the lack of crossing facilities 

could lead to more severe crashes if pedestrians choose to cross at that location anyway 

because other crossings are much farther away and more inconvenient.   
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When implemented with other safety countermeasures, crosswalk markings can 

improve pedestrian safety by increasing driver awareness of potential pedestrians and 

decreasing vehicle speeds.  These countermeasures could include geometric 

improvements, high visibility markings, and warning signs.  High-visibility crosswalk 

(HVC) markings have been found to be more easily detected by driver than other styles, 

and is the best option when the decision is made to provide a crossing at uncontrolled 

locations.  However, HVCs perform better at improving safety when combined with other 

enhancements such as pedestrian crossing signs.  This combination has been found to 

increase driver yielding before the crosswalk.  While these results could help policy makers 

analyze when, where, and what type of crosswalk can improve pedestrian safety, the past 

studies had limitations.  The data and methods that were used could not fully capture 

driving behavior that occurs in the field to analyze HVC effectiveness. 

 

The SHRP2 naturalistic driving study (NDS) provides a great opportunity to 

address the limitations of past research.  The data is a rich source of information that 

captures individual driving behavior rather than aggregated average values.  NDS data 

gives a complete representation of actual driver behavior, unlike driving simulators or field 

studies with an observer in the vehicle.  Drivers were observed over an extended length of 

time, which allows for more analysis of their behavior and reactions than a driving 

simulator or field test.  With the SHRP2 data, other factors can be accounted for including 

gender and age differences, environmental conditions, and trip frequency by the same 

driver.  Statistical modeling of measures of driving behavior accounts for other factors that 
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could impact pedestrian safety.  This study will address past issues by analyzing actual 

driving behavior before and after the installation of HVCs at uncontrolled locations. 
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DATA AND METHODOLOGY 

 Overview of Approach 

 

The Naturalistic Driving Study (NDS) for the second Strategic Highway Research 

Program (SHRP2) was conducted with main purpose of understanding the role of driver 

performance and behavior in roadway safety.  Unlike the data used in the past, the NDS 

data offers detailed information on the everyday driving behavior of a large number of 

participants.  This exploratory analysis uses a sample of the data from one of the six NDS 

sites, to evaluate the effectiveness of high-visibility crosswalks (HVC).  Three HVC 

locations were selected for the study, and a representative random sample of trips through 

the locations were analyzed.  The data used includes forward-facing videos and time series 

data for each trip, as well as basic driver and vehicle characteristics. 

 

No pedestrian – motor vehicle crashes were observed; therefore crash surrogate 

measures (i.e., speed, acceleration, and gas pedal position) were used to evaluate driving 

behavior.  The surrogate measures were selected based on factors that have been found to 

impact accidents in past research, and are representative measures of driving behavior.  For 

the sites with available data before and after the HVCs were installed, hypothesis tests were 

performed to determine if there was a significant change in the surrogate measures with 
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the implementation of HVCs.  While hypothesis tests indicate if the HVC improve 

pedestrian safety, they do not take into account other factors that affect driving behavior.  

Linear regression models were estimated for the change in the surrogate measures between 

a benchmark point and the crosswalk while controlling for a variety of other factors. 

 

 Study Location 

 

Trip data were collected and processed from three representative high-visibility 

crosswalk (HVC) locations in the Erie County SHRP2 study site.  The data were collected 

over the three-year period from 2011 to 2013.  Sites were chosen based on the availability 

of sufficient traversal data through the locations both before and after the HVC was 

installed.  However, one of the locations only provided trips after the HVC was installed, 

but was selected because it had a relatively high pedestrian traffic count compared to the 

other locations.  This allowed for the statistical models to account for the effect of 

pedestrian presence on driver behavior. 

 

The HVCs at all three locations consisted of ladder-type crosswalk markings, as 

well as pedestrian crossing signs.  There were warning signs installed in advance of the 

crosswalk, as well as at the crossing location.  Table 3.1 identifies the crosswalks and 

summarizes information about the three locations.  Two of the locations (Eagle Street with 

Oak Street and Elm Street, in Buffalo) are 3-lane one-way streets that run parallel to each 

other but in opposite directions, and both are stop-controlled on the minor approach (Eagle 



19 
 

 
 

Street).  These two Buffalo locations had HVC markings and pedestrian crossing signage 

installed during the study period.  The third crosswalk is at a midblock location on Main 

Street in the Village of Hamburg.  It is a 2-way two-lane street with on-street parking on 

both sides.  Aerial views of the three crosswalks are shown in Figure 3.1 and Figure 3.2.  
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Table 3.1. Summary of selected HVC locations. 

HVC 
Number Name Date Installed No. of drivers/trips Lanes/Direction 

5 Elm/Eagle - Buffalo 8/30/12 48/474 3 lanes one direction (N) 

6 Oak/Eagle - Buffalo 9/12/12 9/328 3 lanes one direction (S) 

18 Main St - Hamburg Unknown – before study 
period 19/276 1 lane each direction (E/W) 
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Figure 3.1. Aerial view of HVC locations 5 (Elm/Eagle) and 6 (Oak/Eagle) in Buffalo. (Source: Google Earth) 

  



 
 

 
 

22 

 

Figure 3.2. Aerial view of HVC location 18 (Main Street) in Hamburg. (Source: Google Earth) 
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 Data Source 

 

The data were collected through the SHRP2 naturalistic driving study (NDS) during 

the 3-year time period from 2011-2013.  The study involved over 3,100 volunteer drivers 

who participated for a 1- or 2- year period at sites in six states.  Each vehicle was equipped 

with an onboard data acquisition system (DAS) that included four video cameras, radar, 

accelerometers, vehicle network information, and GPS (FHWA, 2015).  A schematic of 

the DAS is shown in Figure 3.3.  The video cameras recorded the forward roadway view, 

driver’s face view, downward view recording the driver’s interaction with the dashboard, 
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and a rear and right-side view. The cameras were located in the head unit mounted near the 

rear view mirror, shown in Figure 3.4 along with an example of the four fields of view.   

 

In addition to the video cameras, the DAS was connected to the vehicle network 

and continuously recorded information while the vehicle was on.  The vehicle network data 

includes the accelerometer, brake pedal activation, steering wheel angle, speed, seat belt 

information, and many other variables.  The system also used radar, GPS, and 

accelerometers to determine the location, speed, lateral movement, and the location of 

surrounding vehicles (Campbell, 2012).  Due to the varying vehicle models and years, the 

program categorized vehicles according to the amount of vehicle control data, with ‘prime’ 

and ‘sub-prime’ vehicles providing the maximum amount of data from the DAS.  Only 

these two classifications were used for this project to minimize the amount of missing time 

series data.   

 

In addition to the DAS, the NDS included information about each participant such 

as socio-demographic factors and a variety of driver assessment tests that were performed 

while the vehicle was being equipped.  The assessment evaluated through filling in forms, 

computer-based tests, and physical tests provided information on visual perception, 

personality factors, general medical condition, and driving knowledge (SHRP2).  Along 

with the NDS, a roadway information database (RID) contains detailed roadway data for 

the study sites with roadway geometry, pavement condition, traffic characteristics, accident 

data, and weather history.  
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Figure 3.3. Data acquisition system schematic view (source: Campbell, 2012, page 32). 
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Figure 3.4. Head unit placement and camera views (source: FHWA, 2015, slide 15). 
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 Data Selection 

 

The data obtained through the SHRP2 NDS for this project includes information 

collected from the front-facing videos and time series data for each trip, in addition to basic 

vehicle and driver information for each participant (i.e., gender, age, and vehicle make and 

model).  The dataset includes 1,078 trips made by a representative random sample of 62 

participants across the three selected HVCs.  The trips were selected to proportionally 

represent all gender and age groups, and both frequent and infrequent traversals of the 

studied locations.  The sample also includes trips before and after the HVC installation for 

the Buffalo HVCs that were installed during the study period, as shown in Table 3.2.  The 

total number of drivers is greater than the 62 participants because some drivers travelled 

through multiple locations.  The sub-sample of 802 trips by 57 drivers at the Buffalo 

locations of 5 and 6 was used for a before-after analysis. 

 

Although there was no data prior to the HVC installation for location 18 in 

Hamburg, there were more observations of pedestrians as shown in Figure 3.5Figure 3.6, 

and Figure 3.7.  Ten percent of all trips through location 18 had pedestrians crossing the 

HVC, compared to only 3 to 5 percent of before and after trips through locations 5 and 6 

in Buffalo.  This offered a better opportunity to evaluate how drivers reacted to HVCs 

differently when there were pedestrians crossing or attempting to cross versus when there 

were no pedestrians in the vicinity. 

  



28 
 

 
 

Table 3.2. Distribution of trips before and after HVC installation 

Location 

Trips 
Through 
Location 

 
No. Of 
Drivers 

% Trips 
Prior to 

HVC Install 

% Trips 
After 

HVC Install 

5 474 48 42% 58% 

6 328 9 58% 42% 

18 276 19 0% 100% 

Total 1,078 76   
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Figure 3.5. Percent of trips with pedestrians present before and after HVC installation: 

Location 5, Buffalo. 
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Figure 3.6. Percent of trips with pedestrians present before and after HVC installation: 

Location 6, Buffalo 
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Figure 3.7. Percent of trips with pedestrians present: Location 18, Hamburg. 
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 Data Processing 

 

The different datasets (videos, time series data, driver, and vehicle data) were linked 

by the event IDs for each trip that were associated with the date, time, location, and the 

participant ID, which was used to identify the driver and vehicle characteristics.  The time 

series data linked to each event ID included information recorded from the vehicle 

throughout the trip (e.g., acceleration, speed, brake pedal, and gas pedal position).  Each 

trip and event ID had a corresponding forward-facing video which was cut to the time 

before, during, and after the HVC location traversal. 

 

The first aspect to the analysis is converting the videos into manageable data, which 

involved the determination of a benchmark point for each location and direction.  The 

benchmark points were selected to represent the approximate location where drivers are 

able to see and react to the HVC.  They were also selected based on easily identifiable 

locations in the videos both before and after the HVC was installed (i.e., landmarks such 

as buildings and light poles were used).  The videos were observed and the time that the 

vehicle crossed the benchmark and HVC locations were recorded.  Additional information 

was also recorded, such as pedestrian presence, vehicle’s lane position, preceding and 

parked vehicles’ presence and the level the obstructed visibility of the HVC, windshield 

condition and wiper usage, weather conditions, pavement surface conditions, and lighting 

conditions.  Using the time stamps on the video, the time series data were matched with 

the rest of the trip data.  Since the on-board vehicle equipment records information at 

intervals, the exact values at the benchmark and HVC locations were interpolated. 
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The selection of the benchmark points for all locations was based on the stopping 

sight distance (i.e., the reaction distance plus the breaking distance).  With all locations 

having a 30 mph speed limit, the required stopping sight distance (assuming a 2.5 sec 

reaction time) is 47 m.  Therefore, the benchmark points on the two Buffalo locations were 

set about 50 m before the crosswalk.  For the Hamburg location, a benchmark of about half 

of this distance (about 22 m) was selected for two reasons.  First many of the videos run 

from nearly 25-30 m before the crosswalk, and second, there were no easily identifiable 

landmarks in the 50 m range.  The difference in benchmark positions was tediously 

addressed through the use of panel effects (random and fixed effects), and/or through the 

use of dummy indicator variables for the Hamburg location.  Figure 3.8 illustrates the 

benchmark and crosswalk points in the HVC 6 (Oak/Eagle, Buffalo) location, presented as 

a snapshot of the forward facing video data. 
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Figure 3.8. HVC 6 Oak/Eagle: Forward facing video with benchmark and HVC points. 
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 Measures of Effectiveness 

 

Since there were no pedestrian-motor vehicle crashes in the Erie County SHRP2 

NDS database and the data contained very few pedestrian-motor vehicle conflicts, the 

analysis of HVC effectiveness was based on surrogate measures.  In road safety analysis, 

crash data is not always sufficient due to small sample sizes and lack of details about driver 

crash avoidance behavior.  Past research (Tarko et al, 2009; Moreno & García, 2013) has 

shown that crash surrogates related to crashes can be used to capture the effect of a safety 

treatment without the occurrence of accidents.  Crash and conflict related measures such 

as time-to-collision, crash potential index, and crash-to-surrogate ratio have been used as 

effective safety measures.  Analysis of the speed profile was found to be another useful 

method to evaluate safety treatments in the absense of crash data.  For this project, vehicle 

acceleration, speed, and gas pedal position during crosswalk traversals were used to capture 

changes in driving behavior before and after HVC installation.  These driver behavior 

measures can impact pedestrian safety at crosswalks, and are therefore good surrogate 

safety measures.   

 

Summary statistics of the surrogate safety measures at the benchmark point and 

crosswalk location are shown in Table 3.3, along with the change between the two points.  

The change between the two points of the three measures were used as dependent variables 

for statistical modeling.  All surrogate measures shown in the table were used for the 

before-after analysis of the HVCs that were installed during the study. 
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Table 3.3. Summary statistics of surrogate measures. 

Description Mean Standard 
Deviation Minimum Maximum 

Speed at benchmark (km/h) 47.473 10.840 4.634 81.786 

Speed at crosswalk (km/h) 48.720 11.443 5.647 81.927 

Difference in speed from benchmark to crosswalk (km/h) 1.414 5.515 -30.906 24.691 

Acceleration at benchmark (g) 0.0135 0.0599 -0.602 0.549 

Acceleration at crosswalk (g) 0.0120 0.0449 -0.243 0.248 

Difference in acceleration from benchmark to crosswalk (g) -0.0015 0.0673 -0.504 0.769 

Gas pedal position at benchmark 12.613 16.206 0 100 

Gas pedal position at crosswalk 11.689 13.051 0 100 

Difference in gas pedal position from benchmark to crosswalk -0.923 16.453 -100 83.859 
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The values of speed (in km/h) ranged from very slow to much faster than the speed 

limit of 30 mph (48.3 km/h), however the average speed at both the benchmark and 

crosswalk was observed to be around the speed limit.  The average change between the two 

points was an increase in speed, but both slowing and speeding up were observed.  

  

Acceleration is measured in gravitational units (g), with a negative value signifying 

that the vehicle is decelerating.  A negative change in acceleration between the benchmark 

and crosswalk points indicates that either the vehicle’s acceleration decreased, or the 

deceleration increased.  This is a change that would increase pedestrian safety.  On the 

other hand, a positive change means that the vehicle’s acceleration increased or the 

deceleration decreased.  The gas pedal position is highly correlated with acceleration, as 

pressing on the gas pedal increases acceleration and releasing the gas pedal causes the 

vehicle to decelerate.  It is measured from the vehicle network as the position of the pedal 

and normalized using the manufacturer specifications with a range of 0 to 100.  Therefore, 

the potential range of difference from the benchmark to crosswalk is +/- 100.   

 

 Hypothesis Testing 

 

The analysis included hypothesis tests for the locations (i.e., the two Buffalo 

crosswalks) with available data before and after the HVC installation.  One-tail hypothesis 

t-tests were conducted to test whether there exist statistical differences in terms of reduction 

in speed, acceleration, and gas pedal position at the benchmark point, the HVC location, 
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and between the two.  The null hypothesis tested was that the average value of the measure 

was not different after the HVC installation from the value before.  The test statistic for the 

hypothesis can be calculated as: 

 

𝑡 =
(�̅�1−�̅�2)−(𝜇1−𝜇2)

√
𝑠1
2

𝑛1
+
𝑠2
2

𝑛2

        (1) 

 

where: �̅� is the mean value, s2 is the variance, n is the number of observations, and (𝜇1 −

𝜇2) is the difference between the mean values in the null hypothesis, which is zero in this 

case.  The subscripts of 1 and 2 represent the before and after conditions (Washington et 

al, 2011).  Assuming a normal distribution, the significance of the t-value can be evaluated 

using the standard student’s t distribution. 

 

The above equation was used for each of the nine surrogate measures of 

effectiveness (i.e., speed, acceleration, and gas pedal position at the benchmark, crosswalk, 

and the change between the two points).  The HVCs at the Buffalo locations were installed 

in two stages, first the crosswalk striping then the pedestrian crossing signs at the crosswalk 

and in advance.  Therefore, three sets of hypothesis tests were conducted to analyze the 

impact of the striping, the pedestrian crossing signs, and the combination of the two.  That 

is, the data was divided by the presence of the HVC striping, then by the presence of the 

pedestrian crossing signs, then finally by the presence of both versus the absence of both. 
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 Statistical Modeling 

 

Random parameter linear regression models were estimated, to determine the 

driver’s reactions prior to crossing the crosswalk.  The models used as dependent variables 

the change in speed, acceleration, and gas pedal position between the benchmark and 

crosswalk points.  To that end, the standard linear regression model is given by: 

 

𝑌𝑖 = 𝛽0 + 𝜷𝑖𝑿𝑖𝑛 + 𝜀𝑖𝑛       (2) 
 

where: Yi is the dependent variable; β0 is a constant term; βi is the coefficient of explanatory 

variable Xin for observation n; and εin is the error term (Washington et al, 2011).  Subscripts 

i and n represent the variable and observation, respectively.   

 

The linear regression model in equation 1 assumes the effect of each explanatory 

variable in the X vector is the same for each trip observation.  This means, for example, 

that the effect of snowy weather on a driver’s speed is the same across all observations and 

individuals.  In reality, there may be other unobserved factors that affect a driver’s speed 

in snowy weather such as their confidence and familiarity with driving in poor conditions 

or the vehicle’s tire traction.  These influences of unobserved heterogeneity can be 

accounted for by incorporating random parameters which allow for the effect of each 

explanatory parameter to vary across observations.  Random parameter linear regression 

models assume that the parameters vary according to a specified distribution.  A normal 

distribution was found to provide the best fit for the models in this analysis.  
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Random parameters are introduced with  if |β φ , where φ  is a vector of 

parameters of the density function (mean and variance).  The resulting outcome 

probabilities are (see Anastasopoulos and Mannering, 2011): 

 

   
i in

i in
n i i

I

e
P i | f | d

e


  

β X

β Xφ β φ β       (3) 

 

where,  nP i |φ  is the outcome probability conditional on  if |β φ .  For model estimation, 

βi can account for variations of the effect of X on outcome probabilities, with the density 

function  if |β φ  used to determine βi.  Mixed logit probabilities are then a weighted 

average for different values of βi across drivers where some elements of the vector βi may 

be fixed and some may be randomly distributed.  Estimation of the random parameters 

multinomial logit model shown in Equation 2 is undertaken using simulated maximum 

likelihood approaches, and 200 Halton draws (Bhat, 2003).  For the functional form of the 

parameter density functions, consideration was given to normal, lognormal, triangular, 

uniform and Weibull distributions, with the normal distribution consistently providing the 

best overall statistical fit.  This feature of random parameters is important, as they can 

either capture the variable effect of a specific parameter on the dependent variable, or more 

importantly the effect of other unobserved factors. 
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The data used in this study is panel data, meaning that it is based on a cross-section 

of individuals observed over time.  In addition to effects varying across observations, they 

may vary between the participants.  There are unobserved human factors for each driver 

that causes their driving behavior to be different from others.  These random effects are 

considered by incorporating the analysis of panel data.  Since the number of trip 

observations was different for each driver, the data is an unbalanced panel of 62 

individuals.  The random parameter linear regression models that were estimated allow the 

effect of the parameters to vary by driver. 

 

Other types of statistical models may also prove useful to evaluate the effectiveness 

of high-visibility crosswalks (HVCs), but random parameter linear regression was 

determined to be the best for this analysis.  The continuous independent variables of change 

in the surrogate measures (i.e., speed, acceleration, and gas pedal position) can take 

negative values, therefore linear regression should be used.  The analysis takes into account 

what factors affect the change in surrogate measures and can be used to show whether the 

HVC has a significant effect.  Other model types, such as binary logit, would be helpful to 

evaluate whether the surrogate measures change over a specified threshold.  However, this 

would require discretizing the data and valuable information would be lost.  Whether there 

is a change or not is evaluated through hypothesis testing, but other factors are not taken 

into account as in statistical modeling. 
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 Descriptive Statistics 

 

The trip dataset used for analysis includes 1,078 trips made by a representative 

random sample of 62 participants that range in age from 16 to 84 years.  The distribution 

of age by gender is depicted in Figure 3.9.  Half of the participants were aged 34 or younger, 

however they only made approximately 36 percent of the trips across the HVC locations.   

 

To capture the effect of familiarity with the location, the sample includes drivers 

who traversed the HVC locations many times as well as those who only made a few 

traversals.  Figure 3.10 shows that 55 percent of trips were made by participants who 

traversed the same HVC location more than 50 times in the study.  However, these trips 

were made by only 10 percent of the drivers, as shown in Figure 3.11.  On the other hand, 

70 percent of drivers traversed the same location less than 10 times and made up only 11 

percent of the trips.  This shows that the data selected has a distribution between drivers 

who were very familiar with the area and those that only traversed the HVC locations a 

few times. 
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Figure 3.9. Gender and ages of drivers in the trip analysis dataset. 
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Figure 3.10. Distribution of trips by HVC traversal frequency of the driver during the 

study period. 
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Figure 3.11. Distribution of drivers by HVC traversal frequency during the study period. 
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For use in statistical modeling, some binary indicator variables were defined from 

the available data.  These include parameters such as the presence of pedestrians to indicate 

how drivers react when there are pedestrians in the vicinity of the crosswalk, and the 

presence of both the HVC striping and crossing sign.  Variables indicating the driver’s 

characteristics were also used, for example age under 30 years old (approximately 47 

percent of trips) or frequent traveler over 50 trips.  Environmental factors including the 

season, weather, and time of day were also considered.  The distribution of trips by these 

factors are shown in Figure 3.12,Figure 3.13, and Figure 3.14.  Two indicator variables that 

were used for these influences are winter trip and AM peak hour of 6-9am (22 and 25 

percent of observations, respectively). 

 

Another factor that was considered is how the driver was driving prior to the HVC 

location (i.e., at the benchmark location).  Indicator variables were created based on the 

speed at the benchmark point to show if the speed was higher or lower than the speed limit 

of 30 mph by 5 mph (8.05 km/h) or more.  The percentage of trips within each category 

(i.e., slow, fast, and near limit) are shown in Figure 3.15.    

 



 
 

 
 

 

Figure 3.12. Percent of trips in each season of the year. 
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Figure 3.13. Trip percentage by weather at time of trip. 
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Figure 3.14. Distribution of trips throughout the day, divided into 3-hour time bins. 
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Figure 3.15. Trips distributed by speed range at benchmark location. 
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Other variables that were created from the data include the indication of a leading 

vehicle (43 percent of trips) and the presence of obstructing vehicles (25 percent with 3 

or more, and 12 percent with 4 or more) that could be blocking the view of the HVC from 

the driver.  Another visibility-related variable, the windshield condition, was taken into 

consideration.  Approximately 13 percent of trips had a windshield condition that was 

classified as very poor through video observation.  In addition, binary indicator variables 

for the HVC location were used to capture other unobserved effects related to the location 

such as number of lanes, lane width, and side clearance.   

 

 Summary 

 

The data analysis began with selecting HVC locations in the Erie County SHRP2 

study site, and a representative random sample of 1,078 trips through those locations.  The 

various NDS data sources obtained for the trips (i.e., forward facing videos, time series 

data, and driver and vehicle information) were processed and combined into a manageable 

dataset for analysis.  This required the selection of a benchmark point prior to the crosswalk 

location to represent where the drivers can see and react to the HVC.   

 

Since there were no observed pedestrian – motor vehicle accidents, crash surrogate 

measures of speed, acceleration, and gas pedal position were used to analyze the HVC 

effectiveness.  This included the values of the three measures at the benchmark and the 

crosswalk, as well as the change between the two locations.  For the locations with data 
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before and after HVC installation, hypothesis tests were performed to determine if the HVC 

striping and pedestrian crossing signs had a significant effect on the surrogate measures.  

Random parameters linear regression models were estimated for the difference in the 

surrogate measures between the two points.  Unlike hypothesis testing, statistical modeling 

takes into account the effect of other factors.  This exploratory analysis shows that NDS 

data is offers further insight into actual driving behavior compared to methods used in the 

past.  Also, it will show whether HVCs impact driving behavior to improve pedestrian 

safety at unsignalized crosswalks. 
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RESULTS AND DISCUSSION 

 Introduction 

 

The effectiveness of high-visibility crosswalks (HVCs) in improving pedestrian 

safety was evaluated through hypothesis tests of before and after data, as well as random 

parameters linear regression modelling to account for other factors.  The SHRP2 

naturalistic driving study (NDS) data that was used provides detailed information of actual 

driving behavior at the three crosswalk locations in Buffalo and Hamburg, New York.  The 

62 participants’ driving was recorded for 1- or 2-year time periods between 2011 and 2013, 

so many drivers traversed the same location multiple times.  This allows the analysis to 

account for familiarity with the area before and after HVC installation.  Three surrogate 

measures of effectiveness were analyzed: speed, acceleration, and gas pedal position.  The 

results are presented and discussed in the subsequent sections.  

 

 Hypothesis Tests 

 

For the locations with traversal data before and after the HVC installation, one-tail 

hypothesis t-tests were conducted to test whether there was a statistical change in speed, 

acceleration, and gas pedal position at the benchmark point, HVC location, and between 
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the two.  The HVCs at the Buffalo locations included crosswalk striping and pedestrian 

crossing signs at the crosswalk and in advance, with the striping installed prior to the two 

sets of signs.  Before-after tests were performed for both measures to analyze the 

effectiveness of each separately.  In addition, hypothesis tests were conducted to determine 

if the surrogate measures were changed from before both to after both to test the effect 

together.  The average before and after values with corresponding t-tests are shown in Table 

4.1.  
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Table 4.1. Average speed, acceleration, and gas pedal position, before and after HVC striping and pedestrian sign installation, and 
corresponding t-tests. 

 

Variable 

HVC Striping Installation Pedestrian Sign Installation Both Striping and Ped. Sign 
Installation 

Before After t-score Before After t-score Before After t-score 
Avg. Speed at Benchmark (km/h) 52.84 50.06 4.711* 52.06 50.03 3.112* 52.84 50.03 4.091* 

Avg. Speed at HVC (km/h) 54.63 51.50 4.786* 53.70 51.58 2.908* 54.63 51.58 3.987* 

Avg. Speed Difference Between 
Benchmark and HVC (km/h) 

1.79 1.44 0.842 1.64 1.54 0.213 1.79 1.54 0.513 

Avg. Acceleration at Benchmark (g) 0.018 0.015 0.635 0.016 0.017 -0.084 0.018 0.017 0.217 

Avg. Acceleration at HVC  (g) 0.017 0.002 4.575* 0.014 0.000 3.938* 0.017 0.000 4.050* 

Avg. Acceleration Difference Between 
Benchmark and HVC  (g) 

-0.001 -0.013 2.883* -0.002 -0.017 3.064* -0.001 -0.017 3.234* 

Avg. Gas Pedal Position at Benchmark 14.54 13.25 0.971 14.13 13.33 0.619 14.54 13.33 0.844 

Avg. Gas Pedal Position at HVC 12.63 11.62 0.941 12.24 11.82 0.382 12.63 11.82 0.666 

Avg. Gas Pedal Position Difference 
Between Benchmark and HVC 

-1.91 -1.63 -0.210 -1.89 -1.50 -0.289 -1.91 -1.50 -0.276 

Asterisks denote statistically different values at the 0.95 level of confidence (corresponding t-score is 1.645) 
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The results of hypothesis tests indicate that there was a statistically significant (at 

0.95 level of confidence) reduction in speed at the benchmark and at the crosswalk location 

after the HVC striping, pedestrian signs, and after both were installed.  There was also a 

statistically significant decrease in acceleration at the crosswalk after the striping, signs, 

and both.  The difference in acceleration from the benchmark to the HVC was found to 

statistically significantly decrease after the installations, indicating that drivers were more 

likely to decelerate before the HVC location after the striping and pedestrian signs were 

installed.  For most variables, the HVC striping had the most significant impact (highest t-

score) compared to the pedestrian crossing sign and both measures together.  However, this 

result alone does not indicate that crosswalk striping should be installed without some type 

of sign to warn drivers that there could be pedestrians trying to cross the roadway, as the 

pedestrian crossing signage was also significant. 

 

 Linear Regression 

 

The first random parameters linear regression model uses as a dependent variable 

the change in speed from the benchmark point to the HVC location.  A variety of factors 

was found to be significant, including the presence of pedestrians, the presence of the HVC 

and pedestrian sign, and obstructing vehicles.  Table 4.2 and Table 4.3 show the descriptive 

statistics for all explanatory variables and the estimation results of the regression model, 
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respectively.  Since linear regression was used, the coefficients linearly correspond to the 

effect of the variable on the speed change. 

 

The results show that the combination of the HVC and pedestrian sign is related to 

a decrease in speed of 1.07 km/h from the benchmark to the crosswalk.   Also, the presence 

of a pedestrian near the crosswalk caused a -0.90 km/h change in speed.  If there was a 

leading vehicle or at least 4 vehicles obstructing the view of the crosswalk, the speed 

decreased.  The leading vehicle indicator is a random parameter, therefore based on the 

normal distribution of the coefficient the effect is negative about 90 percent of the time.  

This shows that drivers were more likely to slow down before the crosswalk if there were 

other vehicles blocking the view of potential pedestrians.  It could also be capturing the 

effect of surrounding vehicles slowing in traffic.  The speed change also decreased if the 

vehicle exceeded the speed limit at the benchmark point by at least 5 mph (i.e., 8.05 km/h), 

the speed was likely to decrease between the benchmark and the HVC (0.72 probability of 

negative effect).   This indicates that the drivers tended to slow down before the crosswalk 

if they had been speeding previously. 
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Table 4.2. Descriptive statistics of explanatory variables for speed change model. 

Variable Description Mean Std. Dev. Min Max 

Dependent Variable: Difference in speed (from GPS) from benchmark to                           
HVC (km/h) 

1.414 5.515 -30.906 24.691 

Pedestrian indicator (1 if pedestrian is present near the HVC, 0 otherwise) 0.146 0.353 0 1 

HVC and pedestrian sign indicator (1 if both are present, 0 otherwise) 0.494 0.500 0 1 

Leading vehicle indicator (1 if leading vehicle is present, 0 otherwise) 0.429 0.495 0 1 

Obstructing vehicle indicator (1 if there are 4 or more vehicles obstructing 
the view to the crosswalk, 0 otherwise) 

0.116 0.320 0 1 

Time indicator (1 if traversal occurred between 6 am and 9 am, 0 otherwise) 0.248 0.432 0 1 

Driver’s age indicator (1 if less than 30 years old, 0 otherwise) 0.429 0.495 0 1 

Frequent traveler indicator (1 if driver traversed more than 50 times the 
same location, 0 otherwise) 

0.545 0.498 0 1 

Speeding indicator (1 if the vehicle exceeds the speed limit at the 
benchmark point by 5 mph - 8.05 km/h - or more, 0 otherwise) 

0.197 0.398 0 1 

Location indicator (1 if Hamburg location, 0 otherwise) 0.256 0.437 0 1 

Speed at benchmark (km/h) 47.473 10.840 4.634 81.786 
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Table 4.3. Estimation results of regression model for speed change. 

Variable Description Coefficient t-statistic p-value 

Constant 9.454 3.55*** 0.0004 
     Standard deviation of parameter density function 1.798 10.62*** 0.0000 

Pedestrian indicator (1 if pedestrian is present near the HVC, 0 otherwise) -0.896 -1.73* 0.0843 

HVC and pedestrian sign indicator (1 if both are present, 0 otherwise) -1.071 -2.11** 0.0345 
Leading vehicle indicator (1 if leading vehicle is present, 0 otherwise) -1.555 -3.02*** 0.0025 
     Standard deviation of parameter density function 1.211 5.14*** 0.0000 

Obstructing vehicle indicator (1 if there are 4 or more vehicles obstructing 
the view to the crosswalk, 0 otherwise) 

-1.258 -2.04** 0.0416 

Time indicator (1 if traversal occurred between 6 am and 9 am, 0 otherwise) 1.187 2.75*** 0.0060 
Driver’s age indicator (1 if less than 30 years old, 0 otherwise) 1.348 3.24*** 0.0012 
     Standard deviation of parameter density function 1.591 5.23*** 0.0000 

Frequent traveler indicator (1 if driver traversed more than 50 times the same 
location, 0 otherwise) 

1.860 6.9*** 0.0000 

Speeding indicator (1 if the vehicle exceeds the speed limit at the benchmark 
point by 5 mph - 8.05 km/h - or more, 0 otherwise) 

-2.003 -2.25** 0.0245 

     Standard deviation of parameter density function 3.435 6.78*** 0.0000 

Location indicator (1 if Hamburg location, 0 otherwise) -2.938 -3.91*** 0.0001 
Speed at benchmark predictor (km/h) -0.152 -2.88*** 0.0040 
Variance parameter, sigma 4.198 85.36*** 0 
Number of individuals / Number of observations 60 / 982   
Log likelihood function -2811.535   
Restricted log likelihood -3069.256     

Note: ***, **, * indicate significance at 1%, 5%, 10% level 
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Speed increased between the benchmark and crosswalk if the trip was during the 

morning hours of 6 to 9 am, as well as if the driver was a frequent traveler through the 

intersection and was familiar with the area.  If the driver is under 30 years old, there was a 

0.2 probability that the speed change between the benchmark and crosswalk would 

increase.  An indicator variable for the Hamburg location was found to be statistically 

significant, and captures the effects of roadway characteristics and other factors. 

 

A linear regression model for difference in acceleration from the benchmark to the 

crosswalk was also estimated.  Unlike the speed difference model, no variables were found 

to be significant as random parameters.  As in the speed change model, the presence of the 

HVC and pedestrian sign was found to be an explanatory variable.  The model accounted 

for other factors including visibility, speed, and location differences.  The descriptive 

statistics for all parameters are shown in Table 4.4, and the model results are in Table 4.5. 
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Table 4.4. Descriptive statistics of explanatory variables for acceleration change model. 

Variable Description Mean Std. Dev. Min Max 

Dependent Variable: Difference in acceleration from benchmark to 
HVC (g) 

-0.00148 0.0673 -0.5038 0.7688 

HVC and pedestrian sign indicator (1 if both are present, 0 
otherwise) 

0.4935 0.5002 0 1 

Obstructing vehicle indicator (1 if there are 3 or more vehicles 
obstructing the view to the crosswalk, 0 otherwise) 

0.2449 0.4302 0 1 

Windshield condition indicator (1 if visibility through windshield 
is very poor, 0 otherwise) 

0.1299 0.3363 0 1 

Slow speed indicator (1 if the vehicle is below the speed limit at 
the benchmark point by 5 mph - 8.05 km/h - or more, 0 otherwise) 

0.2356 0.4246 0 1 

Location indicator (1 if Buffalo-Elm/Eagle location, 0 otherwise) 0.4397 0.4966 0 1 

Acceleration at benchmark (g) 0.0135 0.0600 -0.6016 0.5491 
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Table 4.5. Estimation results of regression model for acceleration change. 

Variable Description Coefficient t-statistic p-value 

Constant 0.0139 3.41*** 0.0006 

HVC and pedestrian sign indicator (1 if both are present, 0 
otherwise) 

-0.0079 -1.79* 0.0736 

Obstructing vehicle indicator (1 if there are 3 or more vehicles 
obstructing the view to the crosswalk, 0 otherwise) 

-0.0090 -1.83* 0.0676 

Windshield condition indicator (1 if visibility through windshield 
is very poor, 0 otherwise) 

-0.0147 -2.40** 0.0162 

Slow speed indicator (1 if the vehicle is below the speed limit at 
the benchmark point by 5 mph - 8.05 km/h - or more, 0 otherwise) 

0.0182 3.44*** 0.0006 

Location indicator (1 if Buffalo-Elm/Eagle location, 0 otherwise) -0.0101 -2.28** 0.0223 

Acceleration at benchmark predictor (g) -0.6602 -10.64*** 0.0000 

Number of individuals / Number of observations 62 / 987   

Log likelihood function 1335.660   

Restricted log likelihood 1256.710   

Note: ***, **, * indicate significance at 1%, 5%, 10% level 
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Table 4.5 shows that the presence of both the HVC and pedestrian sign decreased 

the change in acceleration (by -0.008 g), or increased the amount of deceleration between 

the benchmark and crosswalk.  Deceleration also increased if visibility was limited due to 

either obstructing vehicles or very poor windshield condition.  On the other hand, 

acceleration change increased if the vehicle was traveling slower than the speed limit at the 

benchmark point by at least 5 mph (i.e., 8.05 km/h) indicating that drivers tend to accelerate 

leading up to the intersection if they had been driving slowly.  A location indicator was 

also included to capture the effects related to the roadway characteristics and other factors 

specific to the Elm/Eagle location. 

 

The final linear regression model used change in gas pedal position between the 

benchmark point and HVC location as the dependent variable.  No random parameters were 

found to be significant in the model.  Explanatory variables that were found to be 

significant are shown in Table 4.6, and Table 4.7 shows the results of model estimation. 
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Table 4.6. Descriptive statistics of explanatory variables for gas pedal position change model. 
 

Variable Description Mean Std. Dev. Min Max 

Dependent Variable: Difference in gas pedal position from 
benchmark to HVC 

-0.923 16.453 -100 83.859 

Season indicator (1 if traversal occurred between Dec. and Feb., 
0 otherwise) 

0.221 0.415 0 1 

HVC and slow speed indicator (1 if the vehicle is below the 
speed limit at the benchmark point by 5 mph - 8.05 km/h - or 
more and HVC is not installed, 0 otherwise) 

0.019* 0.135 0 1 

Gas pedal position at benchmark 12.613 16.206 0 100 

Note: This variable has the problem of low variability and warrants further investigation, but serves as an indication for the effect 
of the HVC on gas pedal position change.  
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Table 4.7. Estimation results of regression model for gas pedal position change. 

Variable Description Coefficient t-statistic p-value 

Constant 3.878 4.00*** 0.0001 

Season indicator (1 if traversal occurred between Dec. and Feb., 
0 otherwise) 

2.114 1.69* 0.0913 

HVC and slow speed indicator (1 if the vehicle is below the 
speed limit at the benchmark point by 5 mph - 8.05 km/h - or 
more and HVC is not installed, 0 otherwise) 

7.288 1.72* 0.0856 

Gas pedal position at benchmark predictor  -0.420 -7.52*** 0.0000 

Number of individuals / Number of observations 62 / 910   

Log likelihood function -3824.861   

Restricted log likelihood -3855.322   

Note: ***, **, * indicate significance at 1%, 5%, 10% level 
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As shown in the results, a small number of parameters were found to be significant 

and provided the best statistical fit of the model.  If the vehicle was traveling below the 

speed limit at the benchmark by 5 mph (i.e., 8.05 km/h) or more, and the HVC was not 

installed, the gas pedal position increased.  This could be analyzed by considering the 

opposite case, when the HVC is installed, and there would be a negative change in gas 

pedal position.  This variable warrants further inspection because it has low variability and 

is potentially accounting for other effects, but it serves as an indication for the effect of the 

HVC on gas pedal position change.  The season was also found to be an explanatory 

parameter, and gas pedal position change increased during the winter months.   

 

 Discussion 

 

For the locations with available data before and after installation, the HVC and 

pedestrian crossing signs were found to decrease the average speed at the benchmark 

location, as well as the average speed and acceleration at the crosswalk location.  After 

HVC installation, the acceleration change between the benchmark and crosswalk 

decreased.  With decreased speed and acceleration, pedestrian safety at the crosswalk was 

increased as a result of the HVC installation.   

 

Statistical modeling takes into effect other factors that hypothesis tests do not, and 

also showed that the presence of the HVC and pedestrian crossing signs decrease speed 

and acceleration change from the benchmark to the crosswalk.  Other factors such as 
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obstructions, visibility, time of day, season, and driver’s traversal frequency were found to 

affect the surrogate measures of HVC effectiveness.  To evaluate the statistical fit of the 

models, goodness-of-fit measures were calculated, shown in Table 4.8. 

 

To avoid calculation issues due to small denominators, near-zero observed values 

(i.e., between +/- 1 km/h for speed change, +/- 0.02 g for acceleration change, and +/- 1 for 

gas pedal position change) were removed before calculating the accuracy measures.  Based 

on the MAPE values, which account for the different sample sizes of the models, the speed 

change model has the best fit with a MAPE value of 0.864.  Other measures cannot be 

accurately compared across the models due to the different scales in the actual values.  

Because of missing data, especially for gas pedal position change, the models do not predict 

the observed values as well as they could with a larger dataset.  The 1,078 trip dataset used 

for this project is relatively small compared to all HVC traversals in the SHRP2 NDS data, 

but it is large enough to demonstrate the feasibility of using NDS data to evaluate the 

effectiveness of HVCs in improving pedestrian safety. 
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Table 4.8. Goodness-of-Fit Measures 

 
Accuracy Measure 

Linear Regression Model 

Speed 
Change 

Acceleration 
Change 

Gas Pedal 
Change 

Mean Absolute Percentage Error (MAPE) 0.864 0.889 1.125 

Mean Error (ME) 0.023 0.001 -0.009 

Mean Absolute Deviation (MAD) 3.232 0.056 12.019 

Mean Squared Error (MSE) 21.813 0.006 330.893 

Root Mean Squared Error (RMSE) 4.670 0.081 18.190 

Standard Deviation of Errors (SDE) 4.674 0.081 18.203 

Mean Percentage Error (MPE) 0.714 0.850 0.990 
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For the change in speed, acceleration, and gas pedal position, the respective 

variables at the benchmark point were used as explanatory parameters, which inevitably 

introduced endogeneity.  This misspecification issue was treated by regressing the 

endogenous variables against all exogenous variables, and using their predictors for model 

estimation.  Use of the values at the benchmark locations were found to improve the 

statistical fit of all three models because all other significant parameters were binary 

indicator variables. 

 

 Summary 

 

The analysis shows that HVCs modify driving behavior and have the potential to 

improve pedestrian safety.  Specifically, the HVC in combination with pedestrian crossing 

signs were related to lower speeds at the benchmark and crosswalk and lower acceleration 

at the crosswalk.  Also, there was a greater decrease in speed and acceleration from the 

benchmark to the crosswalk position with the presence of the HVC.  There is also a 

potential decrease in gas pedal position, but that relationship requires further analysis with 

a larger dataset.  Potential for future work to further analyze HVC effectiveness using NDS 

data is discussed in the next chapter.   
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SUMMARY AND CONCLUSION 

 Summary 

 

Making roadways safer for pedestrians is an important goal in the United States and 

New York State.  One widely employed strategy to accomplish this goal is the use of high-

visibility crosswalk (HVC) markings.  The effectiveness of safety countermeasures has 

been analyzed using various data types and methodologies.  This project evaluated the 

effectiveness of HVCs to improve pedestrian safety at uncontrolled locations using the 

SHRP2 naturalistic driving study (NDS) data.  NDS data offers a unique opportunity to 

analyze actual driving behavior over a period of time along with many other parameters.  

Three uncontrolled crosswalk locations in the Erie County, New York test site were 

selected for analysis.  Two of the locations had HVCs installed during the study period, 

allowing for a before/after analysis.  At the third location, only post HVC installation data 

was available.  A representative random sample of 1,078 trips by 62 participants was 

selected for the study.  For each trip, forward-facing video, time series data, and basic 

driver and vehicle information was processed and compiled into the dataset for analysis. 

 

No pedestrian – motor vehicle crashes were observed, so crash surrogates (i.e., 

speed, acceleration, and gas pedal position) were used to evaluate driving behavior.  
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Random parameters linear regression models were estimated for the change in the 

surrogate measures between a benchmark point and the crosswalk while controlling for a 

variety of other factors.  Hypothesis tests were conducted using data from the locations 

with observations before and after the HVC was installed.  The key findings and potential 

for future work are discussed in the following sections.  Overall, this work shows that 

HVCs have the potential to improve pedestrian safety and modify driving behavior, and 

that NDS data is useful for analyzing their effectiveness.   

 

 Key Findings 

 

The effectiveness of high-visibility crosswalks (HVC) to improve pedestrian safety 

at uncontrolled locations was evaluated by analyzing the driving behavior of SHRP2 

participants at three locations in the Erie County, New York test site.  In the absence of 

pedestrian-motor vehicle crashes, speed, acceleration, and gas pedal position were used as 

surrogate safety measures.  Table 5.1 shows the desirable effects of the surrogate measures 

and indicates which ones were proven through the analysis. 
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Table 5.1. Desirable effects of HVCs on surrogate measures with results. 

Parameter Desirable Effect for Pedestrian Safety Proven 

Speed at Benchmark (km/h) Slower speed  

Speed at HVC (km/h) Slower speed  

Speed Difference Between 
Benchmark and HVC (km/h) 

Decrease (more slowing between 
benchmark and HVC)  

Acceleration at Benchmark (g) Lower (less acceleration or more 
deceleration)  

Acceleration at HVC  (g) Lower (less acceleration or more 
deceleration)  

Acceleration Difference Between 
Benchmark and HVC  (g) 

Decrease (less acceleration or more 
deceleration between benchmark and 
HVC) 

 

Gas Pedal Position at Benchmark Lower (less pressure on gas pedal)  

Gas Pedal Position at HVC Lower (less pressure on gas pedal)  

Gas Pedal Position Difference 
Between Benchmark and HVC 

Decrease (let up on gas pedal between 
benchmark and HVC) * 

Note: This result warrants further investigation, but indicates the potential effect of the 
HVC on gas pedal position change.  
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From the estimated statistical models, it was found that the HVC combined with 

the pedestrian crossing sign decreases the change in speed and acceleration between the 

benchmark and crosswalk points.  Potentially, the HVC could also decrease gas pedal 

position, and this could be further analyzed with a larger dataset.  In general, HVCs can 

modify driving behavior, which in turn increases pedestrian safety at uncontrolled 

locations.  As an exploratory analysis this work also shows that naturalistic driving study 

data are useful for analyzing HVC effectiveness. 

 

 Directions for Future Research 

 

This study was limited by the amount of data that were used.  It takes many hours 

to process the videos and the time series data for all trips.  An automated method to process 

videos would accelerate the process and expand the amount of data that could be analyzed.  

With more trip observations, statistical models could provide a better statistical fit to 

evaluate the effectiveness of HVCs.  Specifically for surrogate measures and other 

parameters that have missing data in some trips due to the equipment, more available trip 

data would prove to be useful. 

 

In addition to purely more data, many other locations should be analyzed both 

within the Erie County SHRP2 study site and in the other five sites to capture regional 

effects.  Drivers in different areas have different driving behaviors and react to pedestrians 
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differently.   Also, policy makers in the other sites may enforce crosswalk laws differently 

and implement HVCs of various types and in different roadway locations.  This analysis 

focused on one type of HVC installation (i.e., high-visibility striping and pedestrian 

crossing signage), but there are many other types of HVCs in the SHRP2 data.  It would be 

beneficial to evaluate and compare the effectiveness of various HVC designs and signage 

in modifying driver behavior.   

 

There is some data that is available in the SHRP2 NDS database that were not used 

for this exploratory analysis.  Each participant in the study had medical and mental 

examinations, and answered survey questions about topics such as their personal driving 

behavior and their understanding of driving rules.  Use of this data in statistical modeling 

would account for more specific driver characteristics.  More specific roadway and 

pavement conditions could also be accounted for through the use of the Roadway 

Information Database (RID) that was compiled for each SHRP2 study site.  This includes 

characteristics such as lane width, side clearance, and pavement condition which may also 

affect driving behavior.   

 

With more trip data from other study sites and more HVC locations, there would 

be more observations of pedestrians crossing the roadway.  The three sites that were used 

in this analysis do not have high pedestrian volumes, especially at night.  Future research 

should further evaluate the effect that pedestrians have on driving behavior at uncontrolled 

HVCs.  Separate models could be estimated for observations with pedestrians crossing and 

no pedestrians, to determine if the effectiveness of HVCs is different whether there are 
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pedestrians present or not.  In addition, separate models could be estimated for before and 

after HVC installation to compare the effects of other factors with and without the HVC 

presence.   

 

The empirical analysis of HVC effectiveness performed in this study shows that 

HVCs can modify driving behavior in terms of speed, acceleration, and gas pedal position 

change.  It is also shown that NDS data is useful evaluate driving behavior at uncontrolled 

HVC locations.  The SHRP2 NDS data offers a unique opportunity to capture actual driver 

behavior.  With the rich source of data, future research could expand on the analysis and 

further the understanding of the effectiveness of various types of HVCs in different 

locations.    
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